Advertisement

Three-dimensional surgical management of a patient with Pruzansky I hemifacial microsomia and severe facial asymmetry: A 4-year follow-up

Published:January 11, 2022DOI:https://doi.org/10.1016/j.ajodo.2020.11.046

      Highlights

      • Hemifacial microsomia can be successfully treated with an orthodontic-surgical approach.
      • Unilateral sagittal split osteotomy can correct severe asymmetries with good stability.
      • Three-dimensional surgical planning facilitates and improves surgical results.
      • Anatomic features should dictate distalization modality in personalized treatment.
      Treatment of hemifacial microsomia is challenging and often requires multiple interventions to restore function and facial esthetics. In this article, the combined orthodontic-surgical treatment of a young patient exhibiting Pruzansky I hemifacial microsomia is reported. The patient was aged 15 years, but his bone age was determined to be 18 years. His facial asymmetry was severe, with the nose and a retrusive chin deviated to the left side and a canted smile. The presurgical phase was aimed at centering the mandibular midline to the center of the chin through the distal movement of the mandibular left buccal dentition. The surgery was planned with 3-dimensional computer-aided surgical simulation and included a LeFort I and unilateral sagittal split osteotomies combined with a genioplasty. This report illustrates the therapeutic stages and a 4-year follow-up of a unique and complex orthognathic surgical approach, chosen among other alternatives and leading to improved function and appearance and stable results.
      To read this article in full you will need to make a payment

      References

        • Ross R.B.
        Lateral facial dysplasia (first and second branchial arch syndrome, Hemifacial microsomia).
        Birth Defects Orig Artic Ser. 1975; 11: 51-59
        • Monahan R.
        • Seder K.
        • Patel P.
        • Alder M.
        • Grud S.
        • O’Gara M.A.
        Hemifacial microsomia. Etiology, diagnosis and treatment.
        J Am Dent Assoc. 2001; 132: 1402-1408
        • Moulin-Romsée C.
        • Verdonck A.
        • Schoenaers J.
        • Carels C.
        Treatment of hemifacial microsomia in a growing child: the importance of co-operation between the orthodontist and the maxillofacial surgeon.
        J Orthod. 2004; 31: 190-200
        • Heude E.
        • Rivals I.
        • Couly G.
        • Levi G.
        Masticatory muscle defects in hemifacial microsomia: a new embryological concept.
        Am J Med Genet A. 2011; 155A: 1991-1995
        • David D.J.
        • Mahatumarat C.
        • Cooter R.D.
        Hemifacial microsomia: a multisystem classification.
        Plast Reconstr Surg. 1987; 80: 525-535
        • Proffit W.R.
        • Fields H.W.
        • Larson B.
        • Sarver D.M.
        Contemporary Orthodontics.
        Elsevier Health Sciences, Amsterdam, the Netherlands2018
        • Zinser M.J.
        • Sailer H.F.
        • Ritter L.
        • Braumann B.
        • Maegele M.
        • Zöller J.E.
        A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and “classic” intermaxillary splints to surgical transfer of virtual orthognathic planning.
        J Oral Maxillofac Surg. 2013; 71: 2151.e1-2151.e21
        • De Riu G.
        • Virdis P.I.
        • Meloni S.M.
        • Lumbau A.
        • Vaira L.A.
        Accuracy of computer-assisted orthognathic surgery.
        J Craniomaxillofac Surg. 2018; 46: 293-298
        • Beukes J.
        • Reyneke J.P.
        • Damstra J.
        Unilateral sagittal split mandibular ramus osteotomy: indications and geometry.
        Br J Oral Maxillofac Surg. 2016; 54: 219-223
        • Abou Chebel N.
        • Saadeh M.
        • Haddad R.
        Unilateral sagittal split osteotomy: effect on mandibular symmetry in the treatment of Class III with laterognathia.
        Prog Orthod. 2020; 21: 19
        • Lee S.G.
        • Kang Y.H.
        • Byun J.H.
        • Kim U.K.
        • Kim J.R.
        • Park B.W.
        Stability of unilateral sagittal split ramus osteotomy for correction of facial asymmetry: long-term case series and literature review.
        J Korean Assoc Oral Maxillofac Surg. 2015; 41: 156-164
        • Kaban L.B.
        • Moses M.H.
        • Mulliken J.B.
        Surgical correction of hemifacial microsomia in the growing child.
        Plast Reconstr Surg. 1988; 82: 9-19
        • Losken H.W.
        • Patterson G.T.
        • Lazarou S.A.
        • Whitney T.
        Planning mandibular distraction: preliminary report.
        Cleft Palate Craniofac J. 1995; 32: 71-76
        • Vuyk H.
        Facial Plastic and Reconstructive Surgery.
        CRC Press, Boca Raton2012
        • Cho H.J.
        • Nguyen T.
        A classification system of mandibular prognathism.
        Oral Surg. 2008; 1: 125-134
        • Kim S.J.
        • Choi T.H.
        • Baik H.S.
        • Park Y.C.
        • Lee K.J.
        Mandibular posterior anatomic limit for molar distalization.
        Am J Orthod Dentofacial Orthop. 2014; 146: 190-197
        • Trauner R.
        • Obwegeser H.
        The surgical correction of mandibular prognathism and retrognathia with consideration of genioplasty. I. Surgical procedures to correct mandibular prognathism and reshaping of the chin.
        Oral Surg Oral Med Oral Pathol. 1957; 10 (contd): 677-689
        • Kim S.
        • Seo Y.J.
        • Choi T.H.
        • Baek S.H.
        New approach for the surgico-orthodontic treatment of hemifacial microsomia.
        J Craniofac Surg. 2012; 23: 957-963
        • Schreuder W.H.
        • Jansma J.
        • Bierman M.W.
        • Vissink A.
        Distraction osteogenesis versus bilateral sagittal split osteotomy for advancement of the retrognathic mandible: a review of the literature.
        Int J Oral Maxillofac Surg. 2007; 36: 103-110
        • Vendittelli B.L.
        • Dec W.
        • Warren S.M.
        • Garfinkle J.S.
        • Grayson B.H.
        • McCarthy J.G.
        The importance of vector selection in preoperative planning of bilateral mandibular distraction.
        Plast Reconstr Surg. 2008; 122: 1144-1153
        • Beukes J.
        • Reyneke J.P.
        • Becker P.J.
        Medial pterygoid muscle and stylomandibular ligament: the effects on postoperative stability.
        Int J Oral Maxillofac Surg. 2013; 42: 43-48
        • Dal Pont G.
        Retromolar osteotomy for the correction of prognathism.
        J Oral Surg Anesth Hosp Dent Serv. 1961; 19: 42-47
        • Hunsuck E.E.
        A modified intraoral sagittal splitting technic for correction of mandibular prognathism.
        J Oral Surg. 1968; 26: 250-253
        • Epker B.N.
        Modifications in the sagittal osteotomy of the mandible.
        J Oral Surg. 1977; 35: 157-159
        • García-Jimenez
        • Colmenero-Ruíz C.
        • Rosón-Gómez S.
        • Encinas-Bascones A.
        Inverted L osteotomy. Indications and techniques.
        Int J Oral Maxillofac Surg. 2013; 42: 1327
        • Franco P.B.
        • Farrell B.B.
        Inverted L osteotomy: a new approach via intraoral access through the advances of virtual surgical planning and custom fixation.
        Oral Maxillofac Surg Cases. 2016; 2: 1-9
        • Swennen G.R.
        • Barth E.L.
        • Eulzer C.
        • Schutyser F.
        The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.
        Int J Oral Maxillofac Surg. 2007; 36: 146-152
        • Swennen G.R.
        • Mollemans W.
        • De Clercq C.
        • Abeloos J.
        • Lamoral P.
        • Lippens F.
        • et al.
        A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning.
        J Craniofac Surg. 2009; 20: 297-307
        • Kusnoto B.
        • Evans C.A.
        Reliability of a 3D surface laser scanner for orthodontic applications.
        Am J Orthod Dentofacial Orthop. 2002; 122: 342-348
        • Kim M.S.
        • Lim S.H.
        • Jeong S.R.
        • Park J.H.
        Maxillary molar intrusion and transverse decompensation to enable mandibular single-jaw surgery with rotational setback and transverse shift for a patient with mandibular prognathism and asymmetry.
        Am J Orthod Dentofacial Orthop. 2020; 157: 818-831
        • Maal T.J.
        • Plooij J.M.
        • Rangel F.A.
        • Mollemans W.
        • Schutyser F.A.
        • Bergé S.J.
        The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography.
        Int J Oral Maxillofac Surg. 2008; 37: 641-646
        • Jones R.M.
        • Khambay B.S.
        • McHugh S.
        • Ayoub A.F.
        The validity of a computer-assisted simulation system for orthognathic surgery (CASSOS) for planning the surgical correction of Class III skeletal deformities: single-jaw versus bimaxillary surgery.
        Int J Oral Maxillofac Surg. 2007; 36: 900-908
        • Ammoury M.J.
        • Mustapha S.
        • Dechow P.C.
        • Ghafari J.G.
        Two distalization methods compared in a novel patient-specific finite element analysis.
        Am J Orthod Dentofacial Orthop. 2019; 156: 326-336
        • Chugh T.
        • Ganeshkar S.V.
        • Revankar A.V.
        • Jain A.K.
        Quantitative assessment of interradicular bone density in the maxilla and mandible: implications in clinical orthodontics.
        Prog Orthod. 2013; 14: 38
        • Deguchi T.
        • Nasu M.
        • Murakami K.
        • Yabuuchi T.
        • Kamioka H.
        • Takano-Yamamoto T.
        Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants.
        Am J Orthod Dentofacial Orthop. 2006; 129: 721.e7-721.e12
        • Ghafari J.G.
        • Ammoury M.J.
        Overcoming compact bone resistance to tooth movement.
        Am J Orthod Dentofacial Orthop. 2020; 158: 343-348