Advertisement

Gingival blood flow before, during, and after clenching, measured by laser Doppler blood flowmeter: A pilot study

Published:September 08, 2021DOI:https://doi.org/10.1016/j.ajodo.2020.06.045

      Highlights

      • Gingival blood flow was measured by the laser Doppler flowmeter.
      • In the attached gingiva, a strong clenching decreased blood flow.
      • Release of the clenching resulted in reactive hyperemia.

      Introduction

      This study aimed to investigate the effects of the strong occlusal force on the hemodynamics of gingival microcirculation.

      Methods

      Eleven adult volunteers with healthy periodontium and normal occlusion participated in this study. Using a noncontact laser Doppler flowmeter placed at the attached gingiva and the interdental papilla of the maxillary first premolar, changes in gingival blood flow (GBF) were examined during and after clenching.

      Results

      When the strong occlusal pressure was applied on the maxillary first premolar by clenching, GBF in the attached gingiva on the buccal side decreased significantly compared with the resting GBF, with medians of 2.3 mL/min/100 g and 5.4 mL/min/100 g, respectively (P <0.05). After the release of the maximum clenching, GBF recovered immediately and transiently increased to a median of 2.4 mL/min/100 g, showing a significant difference to the resting GBF (P <0.05). In contrast, in the interdental papilla, no significant change in GBF was found by clenching.

      Conclusions

      Ischemia of the buccal attached gingiva associated with strong clenching may be due to compression of the vascular network of the periodontal membrane. Through reactive hyperemia resulting from the release of clenching, it is possible not only that blood flow will be restored to the tissue but that the tissue itself may be damaged by the reperfusion. During active orthodontic treatment, it is suggested that occlusal management to prevent occlusal trauma is important to avoid detrimental effects on periodontal tissues.
      To read this article in full you will need to make a payment

      References

        • Melsen B.
        • Allais D.
        Factors of importance for the development of dehiscences during labial movement of mandibular incisors: A retrospective study of adult orthodontic patients.
        Am J Orthod Dentofacial Orthop. 2005; 127 (quiz 625): 552-561
        • Slutzkey S.
        • Levin L.
        Gingival recession in young adults: occurrence, severity, and relationship to past orthodontic treatment and oral piercing.
        Am J Orthod Dentofacial Orthop. 2008; 134: 652-656
        • Renkema A.M.
        • Fudalej P.S.
        • Renkema A.
        • Kiekens R.
        • Katsaros C.
        Development of labial gingival recessions in orthodontically treated patients.
        Am J Orthod Dentofacial Orthop. 2013; 143: 206-212
        • Ong M.M.A.
        • Wang H.L.
        Periodontic and orthodontic treatment in adults.
        Am J Orthod Dentofacial Orthop. 2002; 122: 420-428
        • William R.
        • Proffit H.W.F.J.
        • Larson B.
        • David M.
        Sarver Contemporary orthodontics.
        Mosby, St.Louis2018
        • Ericsson I.
        • Lindhe J.
        Effect of longstanding jiggling on experimental marginal periodontitis in the beagle dog.
        J Clin Periodontol. 1982; 9: 497-503
        • Polson A.M.
        • Zander H.A.
        Effect of periodontal trauma upon intrabony pockets.
        J Periodontol. 1983; 54: 586-591
        • Matsuo M.
        • Takahashi K.
        Scanning electron microscopic observation of microvasculature in periodontium.
        Microsc Res Tech. 2002; 56: 3-14
        • Sumii H.
        A study of the effects of trauma from occlusion on the extent of inflammation in experimental periodontitis in monkeys.
        J Jpn Soc Periodontol. 1997; 39: 31-45
        • Mijuskovic M.
        • Gebistorf M.C.
        • Pandis N.
        • Renkema A.M.
        • Fudalej P.S.
        Tooth wear and gingival recession in 210 orthodontically treated patients: a retrospective cohort study.
        Eur J Orthod. 2018; 40: 444-450
        • Hock J.
        • Nuki K.
        Erythrocyte velocity in vascular networks of young noninflamed dog gingiva.
        J Dent Res. 1976; 55: 1058-1060
        • Kinnen E.
        • Goldberg H.J.
        The application of electrical impedance plethysmography to the study of gingival circulation.
        J Periodontol. 1978; 49: 528-533
        • Clarke N.G.
        • Shephard B.C.
        • Hirsch R.S.
        The effects of intra-arterial epinephrine and nicotine on gingival circulation.
        Oral Surg Oral Med Oral Pathol. 1981; 52: 577-582
        • Kaplan M.L.
        • Jeffcoat M.K.
        • Goldhaber P.
        Blood flow in gingiva and alveolar bone in beagles with periodontal disease.
        J Periodontal Res. 1982; 17: 384-389
        • Rajan V.
        • Varghese B.
        • van Leeuwen T.G.
        • Steenbergen W.
        Review of methodological developments in laser Doppler flowmetry.
        Lasers Med Sci. 2009; 24: 269-283
        • Kouadio A.A.
        • Jordana F.
        • Koffi N.J.
        • Le Bars P.
        • Soueidan A.
        The use of laser Doppler flowmetry to evaluate oral soft tissue blood flow in humans: a review.
        Arch Oral Biol. 2018; 86: 58-71
        • Hoke J.A.
        • Burkes E.J.
        • White J.T.
        • Duffy M.B.
        • Klitzman B.
        Blood-flow mapping of oral tissues by laser Doppler flowmetry.
        Int J Oral Maxillofac Surg. 1994; 23: 312-315
        • Heckmann J.G.
        • Hilz M.J.
        • Hummel T.
        • Popp M.
        • Marthol H.
        • Neundörfer B.
        • et al.
        Oral mucosal blood flow following dry ice stimulation in humans.
        Clin Auton Res. 2000; 10: 317-321
        • Sabuncuoglu F.A.
        • Ersahan S.
        Changes in maxillary molar pulp blood flow during orthodontic intrusion.
        Aust Orthod J. 2014; 30: 152-160
        • Sabuncuoglu F.A.
        • Ersahan S.
        Comparative evaluation of pulpal blood flow during incisor intrusion.
        Aust Orthod J. 2015; 31: 171-177
        • Matheny J.L.
        • Abrams H.
        • Johnson D.T.
        • Roth G.I.
        Microcirculatory dynamics in experimental human gingivitis.
        J Clin Periodontol. 1993; 20: 578-583
        • Develioglu H.
        • Özdemir H.
        • Bostanci V.
        Comparative analysis of the blood flow values of patients with type 2 diabetes mellitus presenting with chronic periodontitis, patients with chronic periodontitis only and healthy individuals.
        West Indian Med J. 2014; 63: 359-363
        • Matsuo M.
        • Okudera T.
        • Takahashi S.S.
        • Wada-Takahashi S.
        • Maeda S.
        • Iimura A.
        Microcirculation alterations in experimentally induced gingivitis in dogs.
        Anat Sci Int. 2017; 92: 112-117
        • Matheny J.L.
        • Johnson D.T.
        • Roth G.I.
        Aging and microcirculatory dynamics in human gingiva.
        J Clin Periodontol. 1993; 20: 471-475
        • Retzepi M.
        • Tonetti M.
        • Donos N.
        Gingival blood flow changes following periodontal access flap surgery using laser Doppler flowmetry.
        J Clin Periodontol. 2007; 34: 437-443
        • Baab D.A.
        • Oberg P.A.
        • Holloway G.A.
        Gingival blood flow measured with a laser Doppler flowmeter.
        J Periodontal Res. 1986; 21: 73-85
        • Yamaguchi K.
        • Nanda R.S.
        Blood flow changes in gingival tissues due to the displacement of teeth.
        Angle Orthod. 1992; 62: 257-264
        • Barta A.
        • Nagy G.
        • Csiki Z.
        • Márton S.
        • Madléna M.
        Changes in gingival blood flow during orthodontic treatment.
        Open Med. 2010; 5: 758-765
        • Ersahan S.
        • Sabuncuoglu F.A.
        Effects of magnitude of intrusive force on pulpal blood flow in maxillary molars.
        Am J Orthod Dentofacial Orthop. 2015; 148: 83-89
        • Yamaguchi K.
        • Nanda R.S.
        • Kawata T.
        Effect of orthodontic forces on blood flow in human gingiva.
        Angle Orthod. 1991; 61 (discussion 203-194): 193-203
        • Alcalde R.E.
        • Jinno T.
        • Orsini M.G.
        • Sasaki A.
        • Sugiyama R.M.
        • Matsumura T.
        Soft tissue cephalometric norms in Japanese adults.
        Am J Orthod Dentofacial Orthop. 2000; 118: 84-89
        • Perry D.A.
        • McDowell J.
        • Goodis H.E.
        Gingival microcirculation response to tooth brushing measured by laser Doppler flowmetry.
        J Periodontol. 1997; 68: 990-995
        • Svalestad J.
        • Hellem S.
        • Vaagbø G.
        • Irgens A.
        • Thorsen E.
        Reproducibility of transcutaneous oximetry and laser Doppler flowmetry in facial skin and gingival tissue.
        Microvasc Res. 2010; 79: 29-33
        • Gleissner C.
        • Kempski O.
        • Peylo S.
        • Glatzel J.H.
        • Willershausen B.
        Local gingival blood flow at healthy and inflamed sites measured by laser Doppler flowmetry.
        J Periodontol. 2006; 77: 1762-1771
        • Matsuki M.
        • Xu Y.B.
        • Nagasawa T.
        Gingival blood flow measurement with a non-contact laser flowmeter.
        J Oral Rehabil. 2001; 28: 630-633
        • Jan Lindhe T.K.
        • Araujo M.
        The anatomy of periodontal tissues.
        Blackwell Publishing, Oxford2008
        • Omori Y.
        • Takahashi S.S.
        • Todoki K.
        Role of nitric oxide in post-ischemic gingival hyperemia in anesthetized dogs.
        Redox Rep. 2002; 7: 300-303
        • Shimada S.
        • Todoki K.
        • Omori Y.
        • Toyama T.
        • Matsuo M.
        • Wada-Takahashi S.
        • et al.
        Contribution of nitrergic nerve in canine gingival reactive hyperemia.
        J Clin Biochem Nutr. 2015; 56: 98-104
        • McCord J.M.
        Oxygen-derived free radicals in postischemic tissue injury.
        N Engl J Med. 1985; 312: 159-163