Advertisement

Safe sites for orthodontic miniscrew insertion in the infrazygomatic crest area in different facial types: A tomographic study

Published:August 12, 2021DOI:https://doi.org/10.1016/j.ajodo.2020.06.044

      Highlights

      • Maxillary buccal alveolar bone thickness was measured on cone-beam computed tomography scans.
      • The sample was divided according to facial type: hyperdivergent, neutral, and hypodivergent.
      • Six zones in 4 distances from the alveolar crest in the molar area were considered.
      • Safe zones for infrazygomatic crest miniscrew insertion were identified.

      Introduction

      Temporary skeletal anchorage devices (TSADs) are used to obtain skeletal anchorage for orthodontic treatment. Their insertion in the infrazygomatic crest (IZC) allows efficient orthodontic mechanics. Different facial types have different bone configurations. We aimed to evaluate the differences in bone thicknesses in the IZC area among patients of each facial type to determine a safe zone for TSAD insertion.

      Methods

      For this retrospective study, 86 cone-beam computed tomography (CBCT) scans were divided into 3 groups according to the facial type: group I, 24 CBCT scans of hyperdivergent patients; group II, 30 scans of neutral patients; and group III, 32 scans of hypodivergent patients. The buccal alveolar bone thickness was measured in 6 zones between the second premolar and distal root of the second molar, 5, 7, 9, and 11 mm apical to the alveolar crest.

      Results

      The IZC areas with minimum thickness for TSAD insertion follows: group I, between first and second molars at 11 mm from the alveolar crest, mesial root of the second molar at 9 mm from the crest, and distal root of the second molar at 11 mm from the crest; groups II and III, between first and second molars at 11 mm from the crest and mesial root of the second molar at 11 mm from the crest.

      Conclusions

      The safe zones for IZC miniscrew insertion are located 11 mm from the alveolar crest between the maxillary first and second molars and on the mesial root of the second molar for all the 3 facial types.
      To read this article in full you will need to make a payment

      References

        • Kanomi R.
        Mini-implant for orthodontic anchorage.
        J Clin Orthod. 1997; 31: 763-767
        • Sugawara J.
        • Daimaruya T.
        • Umemori M.
        • Nagasaka H.
        • Takahashi I.
        • Kawamura H.
        • et al.
        Distal movement of mandibular molars in adult patients with the skeletal anchorage system.
        Am J Orthod Dentofacial Orthop. 2004; 125: 130-138
        • Melsen B.
        Mini-implants: Where are we?.
        J Clin Orthod. 2005; 39 (quiz 531): 539-547
        • Baumgaertel S.
        • Hans M.G.
        Buccal cortical bone thickness for mini-implant placement.
        Am J Orthod Dentofacial Orthop. 2009; 136: 230-235
        • Lee K.J.
        • Joo E.
        • Kim K.D.
        • Lee J.S.
        • Park Y.C.
        • Yu H.S.
        Computed tomographic analysis of tooth-bearing alveolar bone for orthodontic miniscrew placement.
        Am J Orthod Dentofacial Orthop. 2009; 135: 486-494
        • Ozdemir F.
        • Tozlu M.
        • Germec-Cakan D.
        Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types.
        Am J Orthod Dentofacial Orthop. 2013; 143: 190-196
        • Hsu E.
        • Lin J.S.Y.
        • Yeh H.Y.
        • Chang C.
        • Roberts W.E.
        Comparison of the failure rate for infrazygomatic bone screws placed in movable mucosa or attached gingiva.
        Int J Orthod Implantol. 2017; 47: 96-106
        • Liu H.
        • Wu X.
        • Yang L.
        • Ding Y.
        Safe zones for miniscrews in maxillary dentition distalization assessed with cone-beam computed tomography.
        Am J Orthod Dentofacial Orthop. 2017; 151: 500-506
        • Jung Y.H.
        • Cho B.H.
        Assessment of the relationship between the maxillary molars and adjacent structures using cone beam computed tomography.
        Imaging Sci Dent. 2012; 42: 219-224
        • Niu L.
        • Wang J.
        • Yu H.
        • Qiu L.
        New classification of maxillary sinus contours and its relation to sinus floor elevation surgery.
        Clin Implant Dent Relat Res. 2018; 20: 493-500
        • Maino B.G.
        • Mura P.
        • Bednar J.
        Miniscrew implants: the Spider Screw anchorage system.
        Semin Orthod. 2005; 11: 40-46
        • Lin J.J.J.
        • Roberts W.E.
        CBCT Imaging to diagnose and correct the failure os maxillary arch retraction with IZC screw Anchorage.
        Int J Orthod Implantol. 2014; 35: 4-17
        • Kuroda S.
        • Yamada K.
        • Deguchi T.
        • Hashimoto T.
        • Kyung H.M.
        • Takano-Yamamoto T.
        Root proximity is a major factor for screw failure in orthodontic anchorage.
        Am J Orthod Dentofacial Orthop. 2007; 131: S68-S73
        • Shetty S.K.
        • Madhur V.K.
        • Ahammed Mahruf P.P.
        • Kumar M.
        Factors affecting stability of orthodontic mini implants—a literature review.
        Sch J Dent Sci. 2018; 5: 28-34
        • Chang C.
        • Liu S.S.
        • Roberts W.E.
        Primary failure rate for 1680 extra-alveolar mandibular buccal shelf mini-screws placed in movable mucosa or attached gingiva.
        Angle Orthod. 2015; 85: 905-910
        • Liou E.J.
        • Chen P.H.
        • Wang Y.C.
        • Lin J.C.
        A computed tomographic image study on the thickness of the infrazygomatic crest of the maxilla and its clinical implications for miniscrew insertion.
        Am J Orthod Dentofacial Orthop. 2007; 131: 352-356
        • Kiliaridis S.
        • Bresin A.
        • Holm J.
        • Strid K.G.
        Effects of masticatory muscle function on bone mass in the mandible of the growing rat.
        Acta Anat. 1996; 155: 200-205
        • Bresin A.
        • Kiliaridis S.
        • Strid K.G.
        Effect of masticatory function on the internal bone structure in the mandible of the growing rat.
        Eur J Oral Sci. 1999; 107: 35-44
        • Bresin A.
        Effects of masticatory muscle function and bite-raising on mandibular morphology in the growing rat.
        Swed Dent J. 2001; : 1-49
        • Mavropoulos A.
        • Kiliaridis S.
        • Bresin A.
        • Ammann P.
        Effect of different masticatory functional and mechanical demands on the structural adaptation of the mandibular alveolar bone in young growing rats.
        Bone. 2004; 35: 191-197
        • Tsunori M.
        • Mashita M.
        • Kasai K.
        Relationship between facial types and tooth and bone characteristics of the mandible obtained by CT scanning.
        Angle Orthod. 1998; 68: 557-562
        • Horner K.A.
        • Behrents R.G.
        • Kim K.B.
        • Buschang P.H.
        Cortical bone and ridge thickness of hyperdivergent and hypodivergent adults.
        Am J Orthod Dentofacial Orthop. 2012; 142: 170-178
        • Cevidanes L.
        • Oliveira A.E.
        • Motta A.
        • Phillips C.
        • Burke B.
        • Tyndall D.
        Head orientation in CBCT-generated cephalograms.
        Angle Orthod. 2009; 79: 971-977
        • Björk A.
        Prediction of mandibular growth rotation.
        Am J Orthod. 1969; 55: 585-599
        • Jarabak J.
        • Fizzell J.A.
        Technique and Treatment with Light Wire and Edge Wise Appliances.
        2nd ed. Mosloy, St Louis1972
        • Neter J.
        • Kutner M.H.
        • Nachtsheim C.J.
        • Wasserman W.
        Applied Linear Statistical Models.
        4th ed. Irwing, Chicago1996
        • Kirkwood B.R.
        • Sterne J.A.
        Essential Medical Statistics.
        2nd ed. Blackwell Publishing Science, Malden2006
        • Fleiss J.L.
        The Design and Analysis of Clinical Experiments.
        Wiley, New York1986
        • Veli I.
        • Uysal T.
        • Baysal A.
        • Karadede I.
        Buccal cortical bone thickness at miniscrew placement sites in patients with different vertical skeletal patterns.
        J Orofac Orthop. 2014; 75: 417-429
        • Swasty D.
        • Lee J.
        • Huang J.C.
        • Maki K.
        • Gansky S.A.
        • Hatcher D.
        • et al.
        Cross-sectional human mandibular morphology as assessed in vivo by cone-beam computed tomography in patients with different vertical facial dimensions.
        Am J Orthod Dentofacial Orthop. 2011; 139: e377-e389
        • Miyawaki S.
        • Koyama I.
        • Inoue M.
        • Mishima K.
        • Sugahara T.
        • Takano-Yamamoto T.
        Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage.
        Am J Orthod Dentofacial Orthop. 2003; 124: 373-378
        • Liedke G.S.
        • da Silveira H.E.
        • da Silveira H.L.
        • Dutra V.
        • de Figueiredo J.A.
        Influence of voxel size in the diagnostic ability of cone beam tomography to evaluate simulated external root resorption.
        J Endod. 2009; 35: 233-235
        • Sherrard J.F.
        • Rossouw P.E.
        • Benson B.W.
        • Carrillo R.
        • Buschang P.H.
        Accuracy and reliability of tooth and root lengths measured on cone-beam computed tomographs.
        Am J Orthod Dentofacial Orthop. 2010; 137: S100-S108