Congenital and acquired mandibular asymmetry: Mapping growth and remodeling in 3 dimensions


      • We assessed mandibular growth and remodeling asymmetries in adolescents.
      • Condylar growth rates were similar bilaterally in those with craniofacial microsomia (CFM).
      • Growth of the dysplastic condyle in CFM is directed laterally.
      • Remodeling of the posterior ramus is decreased on the dysplastic side in CFM.
      • In noncongenital dentofacial deformity, mandibular growth is more unilateral and condylar.


      Disordered craniofacial development frequently results in definitive facial asymmetries that can significantly impact a person's social and functional well-being. The mandible plays a prominent role in defining facial symmetry and, as an active region of growth, commonly acquires asymmetric features. Additionally, syndromic mandibular asymmetry characterizes craniofacial microsomia (CFM), the second most prevalent congenital craniofacial anomaly (1:3000 to 1:5000 live births) after cleft lip and palate. We hypothesized that asymmetric rates of mandibular growth occur in the context of syndromic and acquired facial asymmetries.


      To test this hypothesis, a spherical harmonic-based shape correspondence algorithm was applied to quantify and characterize asymmetries in mandibular growth and remodeling in 3 groups during adolescence. Longitudinal time points were automatically registered, and regions of the condyle and posterior ramus were selected for growth quantification. The first group (n = 9) had a diagnosis of CFM, limited to Pruzansky-Kaban type I or IIA mandibular deformities. The second group (n = 10) consisted of subjects with asymmetric, nonsyndromic dentofacial asymmetry requiring surgical intervention. A control group (n = 10) of symmetric patients was selected for comparison. A linear mixed model was used for the statistical comparison of growth asymmetry between the groups.


      Initial mandibular shape and symmetry displayed distinct signatures in the 3 groups (P <0.001), with the greatest asymmetries in the condyle and ramus. Similarly, mandibular growth had unique patterns in the groups. The dentofacial asymmetry group was characterized by significant asymmetry in condylar and posterior ramal remodeling with growth (P <0.001). The CFM group was characterized by asymmetric growth of the posterior ramus (P <0.001) but relatively symmetric growth of the condyles (P = 0.47).


      Forms of CFM are characterized by active and variable growth of the dysplastic side, which has a distinct pattern from other disorders of mandibular growth.
      To read this article in full you will need to make a payment


        • Heike C.L.
        • Luquetti D.V.
        • Hing A.V.
        Craniofacial microsomia overview.
        in: Pagon R.A. Adam M.P. Ardinger H.H. Wallace S.E. Amemiya A. Bean L.J. GeneReviews. University of Washington, Seattle1993
        • Heike C.L.
        • Hing A.V.
        • Aspinall C.A.
        • Bartlett S.P.
        • Birgfeld C.B.
        • Drake A.F.
        • et al.
        Clinical care in craniofacial microsomia: a review of current management recommendations and opportunities to advance research.
        Am J Med Genet. 2013; 163C: 271-282
        • Vargervik K.
        Mandibular malformations: growth characteristics and management in hemifacial microsomia and Nager syndrome.
        Acta Odontol Scand. 1998; 56: 331-338
        • Johnston M.C.
        • Bronsky P.T.
        Prenatal craniofacial development: new insights on normal and abnormal mechanisms.
        Crit Rev Oral Biol Med. 1995; 6: 25-79
        • Pirttiniemi P.
        • Peltomaki T.
        • Muller L.
        • Luder H.U.
        Abnormal mandibular growth and the condylar cartilage.
        Eur J Orthod. 2009; 31: 1-11
        • Kaban L.B.
        Mandibular asymmetry and the fourth dimension.
        J Craniofac Surg. 2009; 20: 622-631
        • Vento A.R.
        • LaBrie R.A.
        • Mulliken J.B.
        The O.M.E.N.S. classification of hemifacial microsomia.
        Cleft Palate Craniofac J. 1991; 28: 68-76
        • Sarnas K.V.
        • Rune B.
        • Aberg M.
        Maxillary and mandibular displacement in hemifacial microsomia: a longitudinal roentgen stereometric study of 21 patients with the aid of metallic implants.
        Cleft Palate Craniofac J. 2004; 41: 290-303
        • Takashima M.
        • Kitai N.
        • Murakami S.
        • Furukawa S.
        • Kreiborg S.
        • Takada K.
        Volume and shape of masticatory muscles in patients with hemifacial microsomia.
        Cleft Palate Craniofac J. 2003; 40: 6-12
        • Vargervik K.
        • Miller A.J.
        Neuromuscular patterns in hemifacial microsomia.
        Am J Orthod. 1984; 86: 33-42
        • Baek C.
        • Paeng J.Y.
        • Lee J.S.
        • Hong J.
        Morphologic evaluation and classification of facial asymmetry using 3-dimensional computed tomography.
        J Oral Maxillofac Surg. 2012; 70: 1161-1169
        • Boutros S.
        • Shetye P.R.
        • Ghali S.
        • Carter C.R.
        • McCarthy J.G.
        • Grayson B.H.
        Morphology and growth of the mandible in Crouzon, Apert, and Pfeiffer syndromes.
        J Craniofac Surg. 2007; 18: 146-150
        • Kaban L.B.
        • Moses M.H.
        • Mulliken J.B.
        Correction of hemifacial microsomia in the growing child: a follow-up study.
        Cleft Palate J. 1986; 23: 50-52
        • Kearns G.J.
        • Padwa B.L.
        • Mulliken J.B.
        • Kaban L.B.
        Progression of facial asymmetry in hemifacial microsomia.
        Plast Reconstr Surg. 2000; 105: 492-498
        • Polley J.W.
        • Figueroa A.A.
        • Liou E.J.
        • Cohen M.
        Longitudinal analysis of mandibular asymmetry in hemifacial microsomia.
        Plast Reconstr Surg. 1997; 99: 328-339
        • Rune B.
        • Sarnas K.V.
        • Selvik G.
        • Jacobsson S.
        Roentgen stereometry with the aid of metallic implants in hemifacial microsomia.
        Am J Orthod. 1983; 84: 231-247
        • Rune B.
        • Selvik G.
        • Sarnas K.V.
        • Jacobsson S.
        Growth in hemifacial microsomia studied with the aid of roentgen stereophotogrammetry and metallic implants.
        Cleft Palate J. 1981; 18: 128-146
        • Shibazaki-Yorozuya R.
        • Yamada A.
        • Nagata S.
        • Ueda K.
        • Miller A.J.
        • Maki K.
        Three-dimensional longitudinal changes in craniofacial growth in untreated hemifacial microsomia patients with cone-beam computed tomography.
        Am J Orthod Dentofacial Orthop. 2014; 145: 579-594
        • Kusnoto B.
        • Figueroa A.A.
        • Polley J.W.
        A longitudinal three-dimensional evaluation of the growth pattern in hemifacial microsomia treated by mandibular distraction osteogenesis: a preliminary report.
        J Craniofac Surg. 1999; 10: 480-486
        • Kaban L.B.
        • Moses M.H.
        • Mulliken J.B.
        Surgical correction of hemifacial microsomia in the growing child.
        Plast Reconstr Surg. 1988; 82: 9-19
        • Kaban L.B.
        • Padwa B.L.
        • Mulliken J.B.
        Surgical correction of mandibular hypoplasia in hemifacial microsomia: the case for treatment in early childhood.
        J Oral Maxillofac Surg. 1998; 56: 628-638
        • Shetye P.R.
        • Grayson B.H.
        • Mackool R.J.
        • McCarthy J.G.
        Long-term stability and growth following unilateral mandibular distraction in growing children with craniofacial microsomia.
        Plast Reconstr Surg. 2006; 118: 985-995
        • Bartlett S.P.
        No evidence for long-term effectiveness of early osteodistraction in hemifacial microsomia.
        Plast Reconstr Surg. 2010; 125: 1567-1568
        • Grummons D.C.
        • Kappeyne van de Coppello M.A.
        A frontal asymmetry analysis.
        J Clin Orthod. 1987; 21: 448-465
        • Figueroa A.A.
        • Pruzansky S.
        The external ear, mandible and other components of hemifacial microsomia.
        J Maxillofac Surg. 1982; 10: 200-211
        • Kaban L.B.
        • Mulliken J.B.
        • Murray J.E.
        Three-dimensional approach to analysis and treatment of hemifacial microsomia.
        Cleft Palate J. 1981; 18: 90-99
        • Baccetti T.
        • Franchi L.
        • McNamara Jr., J.A.
        An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth.
        Angle Orthod. 2002; 72: 316-323
        • Nguyen T.
        • Cevidanes L.H.
        • George W.
        Validation of 3D mandibular regional superimposition methods for growing patients [abstract].
        J Dent Res. 2014; 93: 784
        • Bland J.M.
        • Altman D.G.
        Comparing methods of measurement: why plotting difference against standard method is misleading.
        Lancet. 1995; 346: 1085-1087
        • Krarup S.
        • Darvann T.A.
        • Larsen P.
        • Marsh J.L.
        • Kreiborg S.
        Three-dimensional analysis of mandibular growth and tooth eruption.
        J Anat. 2005; 207: 669-682
        • Kim I.
        • Oliveira M.E.
        • Duncan W.J.
        • Cioffi I.
        • Farella M.
        3D assessment of mandibular growth based on image registration: a feasibility study in a rabbit model.
        Biomed Res Int. 2014; 2014: 276128
        • Styner M.
        • Oguz I.
        • Xu S.
        • Brechbuhler C.
        • Pantazis D.
        • Levitt J.J.
        • et al.
        Framework for the statistical shape analysis of brain structures using SPHARM-PDM.
        Insight J. 2006; : 242-250
        • Alhadidi A.
        • Cevidanes L.H.
        • Paniagua B.
        • Cook R.
        • Festy F.
        • Tyndall D.
        3D quantification of mandibular asymmetry using the SPHARM-PDM tool box.
        Int J Comput Assist Radiol Surg. 2012; 7: 265-271
        • Fox J.
        Applied regression analysis and generalized linear models.
        3rd ed. SAGE Publications, Thousand Oaks, Calif2015
        • Snijders T.A.
        • Bosker R.J.
        Multilevel analysis: an introduction to basic and advanced multilevel modeling.
        2nd ed. SAGE Publications, Thousand Oaks, Calif2012
        • Bjork A.
        Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant method.
        J Dent Res. 1963; 42: 400-411
        • Bjork A.
        Prediction of mandibular growth rotation.
        Am J Orthod. 1969; 55: 585-599
        • Martinez-Maza C.
        • Rosas A.
        • Nieto-Diaz M.
        Postnatal changes in the growth dynamics of the human face revealed from bone modelling patterns.
        J Anat. 2013; 223: 228-241
        • Enlow D.H.
        • Harris D.B.
        A study of postnatal growth of the human mandible.
        Am J Orthod. 1964; 50: 25-50
        • Enlow D.H.
        • Hans M.G.
        Essentials of facial growth.
        2nd ed. Needham Press, Ann Arbor, Mich2008
        • Gu Y.
        • McNamara Jr., J.A.
        Cephalometric superimpositions.
        Angle Orthod. 2008; 78: 967-976
        • Bjork A.
        • Skieller V.
        Normal and abnormal growth of the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years.
        Eur J Orthod. 1983; 5: 1-46
        • Enlow D.H.
        A morphogenetic analysis of facial growth.
        Am J Orthod. 1966; 52: 283-299
        • Cevidanes L.H.
        • Alhadidi A.
        • Paniagua B.
        • Styner M.
        • Ludlow J.
        • Mol A.
        • et al.
        Three-dimensional quantification of mandibular asymmetry through cone-beam computerized tomography.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 111: 757-770
        • Hans M.G.
        • Enlow D.H.
        • Noachtar R.
        Age-related differences in mandibular ramus growth: a histologic study.
        Angle Orthod. 1995; 65: 335-340
        • Skieller V.
        • Bjork A.
        • Linde-Hansen T.
        Prediction of mandibular growth rotation evaluated from a longitudinal implant sample.
        Am J Orthod. 1984; 86: 359-370
        • Fahey F.H.
        • Abramson Z.R.
        • Padwa B.L.
        • Zimmerman R.E.
        • Zurakowski D.
        • Nissenbaum M.
        • et al.
        Use of (99m)Tc-MDP SPECT for assessment of mandibular growth: development of normal values.
        Eur J Nucl Med Mol Imaging. 2010; 37: 1002-1010
        • Pripatnanont P.
        • Vittayakittipong P.
        • Markmanee U.
        • Thongmak S.
        • Yipintsoi T.
        The use of SPECT to evaluate growth cessation of the mandible in unilateral condylar hyperplasia.
        Int J Oral Maxillofac Surg. 2005; 34: 364-368
        • Mulliken J.B.
        • Kaban L.B.
        Analysis and treatment of hemifacial microsomia in childhood.
        Clin Plast Surg. 1987; 14: 91-100
        • Sarnas K.V.
        • Pancherz H.
        • Rune B.
        • Selvik G.
        Hemifacial microsomia treated with the Herbst appliance. Report of a case analyzed by means of roentgen stereometry and metallic implants.
        Am J Orthod. 1982; 82: 68-74
        • Ongkosuwito E.M.
        • van Vooren J.
        • van Neck J.W.
        • Wattel E.
        • Wolvius E.B.
        • van Adrichem N.
        • et al.
        Changes of mandibular ramal height, during growth in unilateral hemifacial microsomia patients and unaffected controls.
        J Craniomaxillofac Surg. 2013; 41: 92-97
        • Huisinga-Fischer C.E.
        • Zonneveld F.W.
        • Vaandrager J.M.
        • Prahl-Andersen B.
        Relationship in hypoplasia between the masticatory muscles and the craniofacial skeleton in hemifacial microsomia, as determined by 3-D CT imaging.
        J Craniofac Surg. 2001; 12: 31-40
        • Heude E.
        • Rivals I.
        • Couly G.
        • Levi G.
        Masticatory muscle defects in hemifacial microsomia: a new embryological concept.
        Am J Med Genet A. 2011; 155A: 1991-1995

      Linked Article

      • Correction
        American Journal of Orthodontics and Dentofacial OrthopedicsVol. 150Issue 6
        • Preview
          Congenital and acquired mandibular asymmetry: Mapping growth and remodeling in 3 dimensions. Am J Orthod Dentofacial Orthop 2016; 150:238-51.
        • Full-Text
        • PDF