How does the amount of surgical insult affect bone around moving teeth?


      The purpose of this study was to determine how the amount of surgical insult affects the quantity and maturity of dentoalveolar bone around teeth that have been orthodontically moved.


      A split-mouth design with 8 foxhound dogs was used to evaluate bone surrounding maxillary second premolars that were protracted for 15 days and retained for 7 weeks. The maxillary first premolars were extracted, and the interseptal bone was removed to within 1 mm of the second premolars; on the insult (lesser surgical insult) side, buccal and lingual vertical grooves were made in the extraction socket to undermine the mesial root of the second premolar; the insult+ (greater surgical insult) side was flapped and had modified corticotomies extending to, but not through, the lingual cortex 1 mm distal to the distal root, and 3 to 5 mm apical to both roots. Microcomputed tomography analyses were used to evaluate the material density, bone volume fraction, and trabecular characteristics of surrounding bone. Hematoxylin and eosin sections were used to determine osteoclast numbers, bone surface areas, and bone volumes.


      After 7 weeks of consolidation, there was significantly (P <0.05) less bone on the insult+ side; it was less dense and less mature than the bone on the insult side. Relative to the control bone, bone on the insult+ side was significantly less dense but showed no differences in bone volume. Preliminary histologic evaluations indicated increased numbers of osteoclasts and greater bone surface areas on the insult+ side than the insult side, but no differences in bone volume.


      Increased surgical insults produce less dense and less mature bone but have no effect on bone volume at 9 weeks after surgery.
      To read this article in full you will need to make a payment


        • Beckwith F.R.
        • Ackerman Jr., R.J.
        • Cobb C.M.
        • Tira D.E.
        An evaluation of factors affecting duration of orthodontic treatment.
        Am J Orthod Dentofacial Orthop. 1999; 115: 439-447
        • Skidmore K.J.
        • Brook K.J.
        • Thomson W.M.
        • Harding W.J.
        Factors influencing treatment time in orthodontic patients.
        Am J Orthod Dentofacial Orthop. 2006; 129: 230-238
        • Lupi J.E.
        • Handelman C.S.
        • Sadowsky C.
        Prevalence and severity of apical root resorption and alveolar bone loss in orthodontically treated adults.
        Am J Orthod Dentofacial Orthop. 1996; 109: 28-37
        • Chang H.S.
        • Walsh L.J.
        • Freer T.J.
        The effect of orthodontic treatment on salivary flow, pH, buffer capacity, and levels of mutans streptococci and lactobacilli.
        Aust Orthod J. 1999; 15: 229-234
        • Wise G.E.
        • King G.J.
        Mechanisms of tooth eruption and orthodontic tooth movement.
        J Dent Res. 2008; 87: 414-434
        • Wada N.
        • Maeda H.
        • Tanabe K.
        • Tsuda E.
        • Yano K.
        • Nakamuta H.
        • et al.
        Periodontal ligament cells secrete the factor that inhibits osteoclastic differentiation and function: the factor is osteoprotegerin/osteoclastogenesis inhibitory factor.
        J Periodontal Res. 2001; 36: 56-63
        • Boester C.H.
        • Johnston L.E.
        A clinical investigation of the concepts of differential and optimal force in canine retraction.
        Angle Orthod. 1974; 44: 113-119
        • Samuels R.H.
        • Rudge S.J.
        • Mair L.H.
        A comparison of the rate of space closure using a nickel-titanium spring and an elastic module: a clinical study.
        Am J Orthod Dentofacial Orthop. 1993; 103: 464-467
        • Daskalogiannakis J.
        • McLachlan K.R.
        Canine retraction with rare earth magnets: an investigation into the validity of the constant force hypothesis.
        Am J Orthod Dentofacial Orthop. 1996; 109: 489-495
        • Kula K.
        • Phillips C.
        • Gibilaro A.
        • Proffit W.R.
        Effect of ion implantation of TMA archwires on the rate of orthodontic sliding space closure.
        Am J Orthod Dentofacial Orthop. 1998; 114: 577-580
        • Samuels R.H.
        • Rudge S.J.
        • Mair L.H.
        A clinical study of space closure with nickel-titanium closed coil springs and an elastic module.
        Am J Orthod Dentofacial Orthop. 1998; 114: 73-79
        • Iwasaki L.R.
        • Haack J.E.
        • Nickel J.C.
        • Morton J.
        Human tooth movement in response to continuous stress of low magnitude.
        Am J Orthod Dentofacial Orthop. 2000; 117: 175-183
        • Nightingale C.
        • Jones S.P.
        A clinical investigation of force delivery systems for orthodontic space closure.
        J Orthod. 2003; 30: 229-236
        • Frost H.
        The regional acceleratory phenomenon: a review.
        Henry Ford Hosp Med J. 1983; 31: 3-9
        • Kole H.
        Surgical operations on the alveolar ridge to correct occlusal abnormalities.
        Oral Surg Oral Med Oral Pathol. 1959; 12: 515-529
        • Anholm J.M.
        • Crites D.A.
        • Hoff R.
        • Rathbun W.E.
        Corticotomy-facilitated orthodontics.
        CDA J. 1986; 14: 7-11
        • Gantes B.
        • Rathbun E.
        • Anholm M.
        Effects on the periodontium following corticotomy-facilitated orthodontics. Case reports.
        J Periodontol. 1990; 61: 234-238
        • Suya H.
        Corticotomy in orthodontics.
        Huthig Buch Verlag, Heidelberg, Germany1991
        • Wilcko W.M.
        • Wilcko T.
        • Bouquot J.E.
        • Ferguson D.J.
        Rapid orthodontics with alveolar reshaping: two case reports of decrowding.
        Int J Periodontics Restorative Dent. 2001; 21: 9-19
        • Hwang H.S.
        • Lee K.H.
        Intrusion of overerupted molars by corticotomy and magnets.
        Am J Orthod Dentofacial Orthop. 2001; 120: 209-216
        • Moon C.H.
        • Wee J.U.
        • Lee H.S.
        Intrusion of overerupted molars by corticotomy and orthodontic skeletal anchorage.
        Angle Orthod. 2007; 77: 1119-1125
        • Oliveira D.D.
        • de Oliveira B.F.
        • de Araujo Brito H.H.
        • de Souza M.M.
        • Medeiros P.J.
        Selective alveolar corticotomy to intrude overerupted molars.
        Am J Orthod Dentofacial Orthop. 2008; 133: 902-908
        • Spena R.
        • Caiazzo A.
        • Gracco A.
        • Siciliani G.
        The use of segmental corticotomy to enhance molar distalization.
        J Clin Orthod. 2007; 41: 693-699
        • Fischer T.J.
        Orthodontic treatment acceleration with corticotomy-assisted exposure of palatally impacted canines.
        Angle Orthod. 2007; 77: 417-420
        • Cho K.W.
        • Cho S.W.
        • Oh C.O.
        • Ryu Y.K.
        • Ohshima H.
        • Jung H.S.
        The effect of cortical activation on orthodontic tooth movement.
        Oral Dis. 2007; 13: 314-319
        • Iino S.
        • Sakoda S.
        • Ito G.
        • Nishimori T.
        • Ikeda T.
        • Miyawaki S.
        Acceleration of orthodontic tooth movement by alveolar corticotomy in the dog.
        Am J Orthod Dentofacial Orthop. 2007; 131: 448.e1-448.e8
        • Ren A.
        • Lv T.
        • Kang N.
        • Zhao B.
        • Chen Y.
        • Bai D.
        Rapid orthodontic tooth movement aided by alveolar surgery in beagles.
        Am J Orthod Dentofacial Orthop. 2007; 131: 160.e1-160.e10
        • Sanjideh P.A.
        • Rossouw P.E.
        • Campbell P.M.
        • Opperman L.A.
        • Buschang P.H.
        Tooth movements in foxhounds after one or two alveolar corticotomies.
        Eur J Orthod. 2010; 32: 106-113
        • Cohen G.
        • Campbell P.M.
        • Rossouw P.E.
        • Buschang P.H.
        Effects of increased surgical trauma on rates of tooth movement and apical root resorption in foxhound dogs.
        Orthod Craniofac Res. 2010; 13: 179-190
        • Cattermole H.C.
        • Cook J.E.
        • Fordham J.N.
        • Muckle D.S.
        • Cunningham J.L.
        Bone mineral changes during tibial fracture healing.
        Clin Orthop Relat Res. 1997; : 190-196
        • Bogoch E.
        • Gschwend N.
        • Rahn B.
        • Moran E.
        • Perren S.
        Healing of cancellous bone osteotomy in rabbits—part II: local reversal of arthritis-induced osteopenia after osteotomy.
        J Orthop Res. 1993; 11: 292-298
        • Schilling T.
        • Muller M.
        • Minne H.W.
        • Ziegler R.
        Influence of inflammation-mediated osteopenia on the regional acceleratory phenomenon and the systemic acceleratory phenomenon during healing of a bone defect in the rat.
        Calcif Tissue Int. 1998; 63: 160-166
        • Lee T.C.
        • Taylor D.
        Quantification of ovine bone adaptation to altered load: morphometry, density, and surface strain.
        Eur J Morphol. 2003; 41: 117-125
        • Lee W.
        • Karapetyan G.
        • Moats R.
        • Yamashita D.D.
        • Moon H.B.
        • Ferguson D.J.
        • et al.
        Corticotomy-/osteotomy-assisted tooth movement microCTs differ.
        J Dent Res. 2008; 87: 861-867
        • Fazzalari N.L.
        • Darracott J.
        • Vernon-Roberts B.
        Histomorphometric changes in the trabecular structure of a selected stress region in the femur in patients with osteoarthritis and fracture of the femoral neck.
        Bone. 1985; 6: 125-133
        • Neander G.
        • von Sivers K.
        • Adolphson P.
        • Dahlborn M.
        • Dalen N.
        An evaluation of bone loss after total hip arthroplasty for femoral head necrosis after femoral neck fracture: a quantitative CT study in 16 patients.
        J Arthroplasty. 1999; 14: 64-70
        • Voor M.J.
        • Brown E.H.
        • Xu Q.
        • Waddell S.W.
        • Burden Jr., R.L.
        • Burke D.A.
        • et al.
        Bone loss following spinal cord injury in a rat model.
        J Neurotrauma. 2012; 29: 1676-1682
        • Tøndevold E.
        • Eliasen P.
        Blood flow rates in canine cortical and canellous bone measured with 99Tcm-labelled human albumin microspheres.
        Acta Orthop Scand. 1982; 53: 7-11
        • Spencer A.C.
        • Campbell P.M.
        • Dechow P.
        • Ellis M.L.
        • Buschang P.H.
        How does the rate of dentoalveolar distraction affect the bone regenerate produced?.
        Am J Orthod Dentofacial Orthop. 2011; 140: e211-e221
        • Moore C.
        • Campbell P.M.
        • Dechow P.C.
        • Ellis M.L.
        • Buschang P.H.
        Effects of latency on the quality and quantity of bone produced by dentoalveolar distraction osteogenesis.
        Am J Orthod Dentofacial Orthop. 2011; 140: 470-478
        • Zapata U.
        • Halvachs E.K.
        • Dechow P.C.
        • Elsalanty M.E.
        • Opperman L.A.
        Architecture and microstructure of cortical bone in reconstructed canine mandibles after bone transport distraction osteogenesis.
        Calcif Tissue Int. 2011; 89: 379-388
        • Nagashima L.K.
        • Rondon-Newby M.
        • Zakhary I.E.
        • Nagy W.W.
        • Zapata U.
        • Dechow P.C.
        • et al.
        Bone regeneration and docking site healing after bone transport distraction osteogenesis in the canine mandible.
        J Oral Maxillofac Surg. 2012; 70: 429-439
        • Aronson J.
        • Good B.
        • Stewart C.
        • Harrison B.
        • Harp J.
        Preliminary studies of mineralization during distraction osteogenesis.
        Clin Orthop Relat Res. 1990; : 43-49
        • Cope J.B.
        • Samchukov M.L.
        • Muirhead D.E.
        Distraction osteogenesis and histogenesis in beagle dogs: the effect of gradual mandibular osteodistraction on bone and gingiva.
        J Periodontol. 2002; 73: 271-282
        • Nosaka Y.
        • Kobayashi M.
        • Kitano S.
        • Komori T.
        Horizontal alveolar ridge distraction osteogenesis in dogs: radiographic and histologic studies.
        Int J Oral Maxillofac Implants. 2005; 20: 837-842
        • Buckwalter J.A.
        • Cooper R.R.
        Bone structure and function.
        Instr Course Lect. 1987; 36: 27-48
        • Mo X.T.
        • Yang Z.M.
        • Qin T.W.
        Effects of 20% demineralization on surface physical properties of compact bone scaffold and bone remodeling response at interface after orthotopic implantation.
        Bone. 2009; 45: 301-308
        • Sebaoun J.D.
        • Kantarci A.
        • Turner J.W.
        • Carvalho R.S.
        • Van Dyke T.E.
        • Ferguson D.J.
        Modeling of trabecular bone and lamina dura following selective alveolar decortication in rats.
        J Periodontol. 2008; 79: 1679-1688