Impact of cone-beam computed tomography on orthodontic diagnosis and treatment planning

      Introduction

      In this study, we measured the impact of cone-beam computed tomography (CBCT) on orthodontic diagnosis and treatment planning.

      Methods

      Participant orthodontists shown traditional orthodontic records for 6 patients were asked to provide a diagnostic problem list, a hypothetical treatment plan, and a clinical certainty. They then evaluated a CBCT scan for each patient and noted any changes, confirmations, or enhancements to their diagnosis and treatment plan.

      Results

      The number of diagnosis and treatment plan changes varied widely by patient characteristics. The most frequently reported diagnosis and treatment plan changes occurred in patients with unerupted teeth, severe root resorption, or severe skeletal discrepancies. We found no benefit in terms of changes in treatment plan for patients when the reason for obtaining a CBCT scan was to examine for abnormalities of the temporomandibular joint or airway, or crowding. Orthodontic participants who own CBCT machines or use CBCT scans frequently in practice reported significantly more diagnosis and treatment plan changes and greater confidence after viewing the CBCT scans during the study.

      Conclusions

      The results of this study support obtaining a CBCT scan before orthodontic diagnosis and treatment planning when a patient has an unerupted tooth with delayed eruption or a questionable location, severe root resorption as diagnosed with a periapical or panoramic radiograph, or a severe skeletal discrepancy. We propose that CBCT scans should be ordered only when there is clear, specific, individual clinical justification.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Orthodontics and Dentofacial Orthopedics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Graber T.M.
        • Vanarsdall R.L.
        • Vig K.W.L.
        Orthodontics: current principles and techniques.
        4th ed. Elsevier Mosby, St Louis2005
        • Proffit W.R.
        • Fields H.W.
        • Sarver D.M.
        Contemporary orthodontics.
        4th ed. Mosby Elsevier, St Louis2007
        • Atchison K.A.
        • Luke L.S.
        • White S.C.
        Contribution of pretreatment radiographs to orthodontists' decision making.
        Oral Surg Oral Med Oral Pathol. 1991; 71: 238-245
        • Tso H.H.
        • Lee J.S.
        • Huang J.C.
        • Maki K.
        • Hatcher D.
        • Miller A.J.
        Evaluation of the human airway using cone-beam computerized tomography.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 108: 768-776
        • El H.
        • Palomo J.M.
        Measuring the airway in 3 dimensions: a reliability and accuracy study.
        Am J Orthod Dentofacial Orthop. 2010; 137 (discussion S50-2): S50.e1-S50.e9
        • Osorio F.
        • Perilla M.
        • Doyle D.J.
        • Palomo J.M.
        Cone beam computed tomography: an innovative tool for airway assessment.
        Anesth Analg. 2008; 106: 1803-1807
        • Schendel S.A.
        • Hatcher D.
        Automated 3-dimensional airway analysis from cone-beam computed tomography data.
        J Oral Maxillofac Surg. 2010; 68: 696-701
        • Mah J.K.
        • Huang J.C.
        • Choo H.
        Practical applications of cone-beam computed tomography in orthodontics.
        J Am Dent Assoc. 2010; 141: 7S-13S
        • van Vlijmen O.J.
        • Kuijpers M.A.
        • Berge S.J.
        • Schols J.G.
        • Maal T.J.
        • Breuning H.
        • et al.
        Evidence supporting the use of cone-beam computed tomography in orthodontics.
        J Am Dent Assoc. 2012; 143: 241-252
        • Librizzi Z.T.
        • Tadinada A.S.
        • Valiyaparambil J.V.
        • Lurie A.G.
        • Mallya S.M.
        Cone-beam computed tomography to detect erosions of the temporomandibular joint: effect of field of view and voxel size on diagnostic efficacy and effective dose.
        Am J Orthod Dentofacial Orthop. 2011; 140: e25-e30
        • Roza M.R.
        • Silva L.A.
        • Januario A.L.
        • Fioravanti M.C.
        • Barriviera M.
        Cone beam computed tomography in the diagnosis of temporomandibular joint alterations in cats.
        J Feline Med Surg. 2011; 13: 393-398
        • Alexiou K.
        • Stamatakis H.
        • Tsiklakis K.
        Evaluation of the severity of temporomandibular joint osteoarthritic changes related to age using cone beam computed tomography.
        Dentomaxillofac Radiol. 2009; 38: 141-147
        • Honey O.B.
        • Scarfe W.C.
        • Hilgers M.J.
        • Klueber K.
        • Silveira A.M.
        • Haskell B.S.
        • et al.
        Accuracy of cone-beam computed tomography imaging of the temporomandibular joint: comparisons with panoramic radiology and linear tomography.
        Am J Orthod Dentofacial Orthop. 2007; 132: 429-438
        • Hilgers M.L.
        • Scarfe W.C.
        • Scheetz J.P.
        • Farman A.G.
        Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography.
        Am J Orthod Dentofacial Orthop. 2005; 128: 803-811
        • Guerrero M.E.
        • Shahbazian M.
        • Elsiena Bekkering G.
        • Nackaerts O.
        • Jacobs R.
        • Horner K.
        The diagnostic efficacy of cone beam CT for impacted teeth and associated features: a systematic review.
        J Oral Rehabil. 2011; 38: 208-216
        • Bjerklin K.
        • Ericson S.
        How a computerized tomography examination changed the treatment plans of 80 children with retained and ectopically positioned maxillary canines.
        Angle Orthod. 2006; 76: 43-51
        • Katheria B.C.
        • Kau C.H.
        • Tate R.
        • Chen J.W.
        • English J.
        • Bouquot J.
        Effectiveness of impacted and supernumerary tooth diagnosis from traditional radiography versus cone beam computed tomography.
        Pediatr Dent. 2010; 32: 304-309
        • Maverna R.
        • Gracco A.
        Different diagnostic tools for the localization of impacted maxillary canines: clinical considerations.
        Prog Orthod. 2007; 8: 28-44
        • Botticelli S.
        • Verna C.
        • Cattaneo P.M.
        • Heidmann J.
        • Melsen B.
        Two- versus three-dimensional imaging in subjects with unerupted maxillary canines.
        Eur J Orthod. 2011; 33: 344-349
        • Haney E.
        • Gansky S.A.
        • Lee J.S.
        • Johnson E.
        • Maki K.
        • Miller A.J.
        • et al.
        Comparative analysis of traditional radiographs and cone-beam computed tomography volumetric images in the diagnosis and treatment planning of maxillary impacted canines.
        Am J Orthod Dentofacial Orthop. 2010; 137: 590-597
        • Nguyen E.
        • Boychuk D.
        • Orellana M.
        Accuracy of cone-beam computed tomography in predicting the diameter of unerupted teeth.
        Am J Orthod Dentofacial Orthop. 2011; 140: e59-e66
        • Becker A.
        • Chaushu S.
        • Casap-Caspi N.
        Cone-beam computed tomography and the orthosurgical management of impacted teeth.
        J Am Dent Assoc. 2010; 141: 14S-18S
        • Liu D.G.
        • Zhang W.L.
        • Zhang Z.Y.
        • Wu Y.T.
        • Ma X.C.
        Localization of impacted maxillary canines and observation of adjacent incisor resorption with cone-beam computed tomography.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 105: 91-98
        • Oberoi S.
        • Knueppel S.
        Three-dimensional assessment of impacted canines and root resorption using cone beam computed tomography.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 113: 260-267
        • Swennen G.R.
        • Mollemans W.
        • De Clercq C.
        • Abeloos J.
        • Lamoral P.
        • Lippens F.
        • et al.
        A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning.
        J Craniofac Surg. 2009; 20: 297-307
        • da Motta A.T.
        • de Assis Ribeiro Carvalho F.
        • Oliveira A.E.
        • Cevidanes L.H.
        • de Oliveira Almeida M.A.
        Superimposition of 3D cone-beam CT models in orthognathic surgery.
        Dent Press J Orthod. 2010; 15: 39-41
        • Almeida R.C.
        • Cevidanes L.H.
        • Carvalho F.A.
        • Motta A.T.
        • Almeida M.A.
        • Styner M.
        • et al.
        Soft tissue response to mandibular advancement using 3D CBCT scanning.
        Int J Oral Maxillofac Surg. 2011; 40: 353-359
        • Cevidanes L.H.
        • Tucker S.
        • Styner M.
        • Kim H.
        • Chapuis J.
        • Reyes M.
        • et al.
        Three-dimensional surgical simulation.
        Am J Orthod Dentofacial Orthop. 2010; 138: 361-371
        • Kapila S.
        • Conley R.S.
        • Harrell Jr., W.E.
        The current status of cone beam computed tomography imaging in orthodontics.
        Dentomaxillofac Radiol. 2011; 40: 24-34
        • AlHadidi A.
        • Cevidanes L.H.
        • Mol A.
        • Ludlow J.
        • Styner M.
        Comparison of two methods for quantitative assessment of mandibular asymmetry using cone beam computed tomography image volumes.
        Dentomaxillofac Radiol. 2011; 40: 351-357
        • Cevidanes L.H.
        • Alhadidi A.
        • Paniagua B.
        • Styner M.
        • Ludlow J.
        • Mol A.
        • et al.
        Three-dimensional quantification of mandibular asymmetry through cone-beam computerized tomography.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 111: 757-770
        • Damstra J.
        • Fourie Z.
        • Ren Y.
        Evaluation and comparison of postero-anterior cephalograms and cone-beam computed tomography images for the detection of mandibular asymmetry.
        Eur J Orthod. 2013; 35: 45-50
        • de Moraes M.E.
        • Hollender L.G.
        • Chen C.S.
        • Moraes L.C.
        • Balducci I.
        Evaluating craniofacial asymmetry with digital cephalometric images and cone-beam computed tomography.
        Am J Orthod Dentofacial Orthop. 2011; 139: e523-e531
        • Kook Y.A.
        • Kim Y.
        Evaluation of facial asymmetry with three-dimensional cone-beam computed tomography.
        J Clin Orthod. 2011; 45: 112-115
        • Lund H.
        • Grondahl K.
        • Grondahl H.G.
        Cone beam computed tomography for assessment of root length and marginal bone level during orthodontic treatment.
        Angle Orthod. 2010; 80: 466-473
        • Makedonas D.
        • Lund H.
        • Grondahl K.
        • Hansen K.
        Root resorption diagnosed with cone beam computed tomography after 6 months of orthodontic treatment with fixed appliance and the relation to risk factors.
        Angle Orthod. 2012; 82: 196-201
        • Peck J.L.
        • Sameshima G.T.
        • Miller A.
        • Worth P.
        • Hatcher D.C.
        Mesiodistal root angulation using panoramic and cone beam CT.
        Angle Orthod. 2007; 77: 206-213
        • Dudic A.
        • Giannopoulou C.
        • Leuzinger M.
        • Kiliaridis S.
        Detection of apical root resorption after orthodontic treatment by using panoramic radiography and cone-beam computed tomography of super-high resolution.
        Am J Orthod Dentofacial Orthop. 2009; 135: 434-437
        • Sherrard J.F.
        • Rossouw P.E.
        • Benson B.W.
        • Carrillo R.
        • Buschang P.H.
        Accuracy and reliability of tooth and root lengths measured on cone-beam computed tomographs.
        Am J Orthod Dentofacial Orthop. 2010; 137: S100-S108
        • Fayed M.M.
        • Pazera P.
        • Katsaros C.
        Optimal sites for orthodontic mini-implant placement assessed by cone beam computed tomography.
        Angle Orthod. 2010; 80: 939-951
        • Morea C.
        • Hayek J.E.
        • Oleskovicz C.
        • Dominguez G.C.
        • Chilvarquer I.
        Precise insertion of orthodontic miniscrews with a stereolithographic surgical guide based on cone beam computed tomography data: a pilot study.
        Int J Oral Maxillofac Implants. 2011; 26: 860-865
        • Qiu L.
        • Haruyama N.
        • Suzuki S.
        • Yamada D.
        • Obayashi N.
        • Kurabayashi T.
        • et al.
        Accuracy of orthodontic miniscrew implantation guided by stereolithographic surgical stent based on cone-beam CT-derived 3D images.
        Angle Orthod. 2012; 82: 284-293
        • Gracco A.
        • Lombardo L.
        • Cozzani M.
        • Siciliani G.
        Quantitative cone-beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement.
        Am J Orthod Dentofacial Orthop. 2008; 134: 361-369
        • Kim S.H.
        • Choi Y.S.
        • Hwang E.H.
        • Chung K.R.
        • Kook Y.A.
        • Nelson G.
        Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography.
        Am J Orthod Dentofacial Orthop. 2007; 131: S82-S89
        • Kim G.T.
        • Kim S.H.
        • Choi Y.S.
        • Park Y.J.
        • Chung K.R.
        • Suk K.E.
        • et al.
        Cone-beam computed tomography evaluation of orthodontic miniplate anchoring screws in the posterior maxilla.
        Am J Orthod Dentofacial Orthop. 2009; 136 (discussion 28-9): 628.e1-628.e10
        • Kim S.H.
        • Yoon H.G.
        • Choi Y.S.
        • Hwang E.H.
        • Kook Y.A.
        • Nelson G.
        Evaluation of interdental space of the maxillary posterior area for orthodontic mini-implants with cone-beam computed tomography.
        Am J Orthod Dentofacial Orthop. 2009; 135: 635-641
        • Merrett S.J.
        • Drage N.A.
        • Durning P.
        Cone beam computed tomography: a useful tool in orthodontic diagnosis and treatment planning.
        J Orthod. 2009; 36: 202-210
        • Hechler S.L.
        Cone-beam CT: applications in orthodontics.
        Dent Clin North Am. 2008; 52 (vii): 809-823
        • De Vos W.
        • Casselman J.
        • Swennen G.R.
        Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature.
        Int J Oral Maxillofac Surg. 2009; 38: 609-625
        • White S.C.
        • Pae E.K.
        Patient image selection criteria for cone beam computed tomography imaging.
        Semin Orthod. 2009; 15: 19-28
        • Silva M.A.
        • Wolf U.
        • Heinicke F.
        • Bumann A.
        • Visser H.
        • Hirsch E.
        Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation.
        Am J Orthod Dentofacial Orthop. 2008; 133: 640.e1-640.e5
        • Cooke J.
        • Wang H.L.
        Canine impactions: incidence and management.
        Int J Periodontics Restorative Dent. 2006; 26: 483-491
        • Fryback D.G.
        • Thornbury J.R.
        The efficacy of diagnostic imaging.
        Med Decis Making. 1991; 11: 88-94
        • Pearce M.S.
        • Salotti J.A.
        • Little M.P.
        • McHugh K.
        • Lee C.
        • Kim K.P.
        • et al.
        Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study.
        Lancet. 2012; 380: 499-505